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Abstract

Microscopic examination of prostate cancer has failed to reveal a reproducible association between 

molecular and morphologic features. However, deep learning algorithms trained on hematoxylin 

and eosin (H&E)-stained whole slide images (WSI) may outperform the human eye and help to 

screen for clinically-relevant genomic alterations. We created deep learning algorithms to identify 

prostate tumors with underlying ERG fusions or PTEN deletions using four stages: A) automated 

tumor identification; B) feature representation learning; C) classification; and D) explainability 

map generation. A novel transformer-based hierarchical architecture was trained on a single 

representative WSI of the dominant tumour nodule from a radical prostatectomy (RP) cohort 

with known ERG/PTEN status (n=224 and n=205, respectively). Two distinct vision transformer 

(ViT)-based networks were utilized for feature extraction and a distinct transformer-based model 

was used for classification. ERG algorithm performance was validated across three RP cohorts, 

including 64 WSI held out from the pre-training cohort (area under receiver operator characteristic 

curve or AUC: 0.91), and 248 and 375 WSI from two independent RP cohorts (AUC: 0.86 and 

0.89). In addition, we tested ERG algorithm performance in two needle biopsy cohorts comprised 

of 179 and 148 WSI (AUC: 0.78 and 0.80). Focusing on cases with homogeneous (clonal) PTEN 

status, PTEN algorithm performance was assessed using 50 WSI held out from the pre-training 
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cohort (AUC: 0.81) as well as 201 and 337 WSI from two independent RP cohorts (AUC: 0.72 

and 0.80) and 151 WSI from a needle biopsy cohort (AUC: 0.75). For explainability, the PTEN 

algorithm was also applied to 19 WSI with heterogeneous (subclonal) PTEN loss, where the 

percent tumor area with predicted PTEN loss correlated with that based on immunohistochemistry 

(r=0.58, p=0.0097). These deep learning algorithms to predict ERG/PTEN status provide proof-of-

principle that H&E images can be used to screen for underlying genomic alterations in prostate 

cancer.
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Introduction

In some tumor types, such as renal cell carcinoma, there is a tight correlation between 

tumor histologic subclass (eg, clear cell renal cell carcinoma) and underlying molecular 

alteration status (VHL gene inactivation). Even within a single histologic tumor subtype, 

some visually-recognized morphologic features may suggest the presence of a specific 

genomic finding. For example, pathologists have long recognized that microsatellite-

unstable colorectal adenocarcinomas have a prominent inflammatory infiltrate, mucinous 

differentiation, and absence of necrosis that is tightly correlated to underlying alterations 

in mismatch repair genes 1,2. However, in other tumor types, such as prostate cancer, 

genotype-phenotype correlations as assessed by visual microscopic examination have been 

rarer, with relatively few exceptions 3, and many are not reproducible across multiple studies 
4–6.

Importantly, deep learning algorithms - which are trained on whole slide images (WSI) from 

hundreds or thousands of individual tumors – can outperform the human eye and improve 

our ability to screen for underlying molecular alterations using hematoxylin and eosin 

(H&E)-stained slides. Such algorithms have been developed to augment visual recognition 

of microsatellite unstable colorectal cancers 7,8, to identify the most commonly mutated 

genes in lung adenocarcinoma 9 and to predict HER2 status in breast cancer 10. While 

sequencing is increasingly recommended for many tumor types to assess for clinically-

actionable genomic alterations, it remains expensive, time-consuming, and inaccessible to 

many patients outside of tertiary care centers. Further, the national shortage of genetic 

counselors 11 means that germline sequencing cannot be used at scale in common tumor 

types, and utilization levels remain low in prostate cancer 12. Thus, deep learning algorithms 

to screen for genomic alterations using a diagnostic H&E stained slide may provide an 

inexpensive test to rapidly triage patients who could most benefit from germline or somatic 

sequencing early in disease progression.

Here, as proof-of-principle, we develop novel vision transformer (ViT)-based deep learning 

algorithms to identify prostate tumors with two of the most common early genomic 

alterations, ERG gene fusions and PTEN gene deletion, using H&E-stained WSI. Across 

multiple independent radical prostatectomy and biopsy cohorts, these algorithms show 
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excellent performance and can even predict the spatial pattern of subclonal PTEN deletions 

across a tumor nodule. Given recent promising results in clinical trials of AKT inhibitors 

for prostate cancer 13,14, deep learning algorithms for alterations such as PTEN loss may 

be useful to select patients likely to benefit from treatment and will pave the way towards 

similar screening protocols to select patients who may benefit from germline sequencing or 

testing for clinically-actionable somatic alterations.

Methods

Patient and tissue cohorts:

Studies were conducted on de-identified human tissues and data under a waiver of consent 

by the Johns Hopkins Institutional Review Board (IRB). Three previously published Johns 

Hopkins radical prostatectomy (RP) cohorts were employed for this study: 1) The Natural 
History Cohort is a case-cohort design on the outcome of metastasis in prostate cancer 
15 that included 288 cases with known ERG-fusion status based on a genetically validated 

and previously published immunohistochemistry (IHC) assay 16,17. In addition, 255 cases 

had known PTEN status, based on a genetically validated IHC assay 18–20 without evidence 

of heterogeneous (subclonal) loss. 2) The Case-Cohort was a non-overlapping case-cohort 

design comprised of 248 tumors with previously published ERG-fusion status based on 

IHC 21,22. Similarly, 201 had known and previously published PTEN status, based on 

genetically validated IHC assay 18–20, without evidence of heterogeneous (subclonal) loss. 

3) The Race Cohort was a grade-matched cohort comprised of self-identified Black or 

White men, of whom 375 cases had previously published ERG-fusion status determined 

by IHC 23 and 337 had known PTEN status based on IHC 23 without evidence of 

heterogeneous (subclonal) loss. Whole slide images from 19 additional RP cases with 

known heterogeneous (subclonal) PTEN IHC loss on whole slide images from the Natural 

History Cohort or other studies were included for prediction of the spatial distribution of 

PTEN loss to validate the PTEN prediction algorithm.

In addition to the radical prostatectomy cohorts, two unpublished needle biopsy cohorts 

were utilized for this study. 1) The Radiation Therapy Cohort included 202 prostate 

needle biopsies performed at Johns Hopkins from 1991–2010, followed by radiation 

therapy at our institution and clinical follow-up. A total of 179 patients had adequate 

tumor volume, known ERG status based on genetically validated IHC assay and 151 

had known PTEN status based on genetically validated IHC assay without evidence of 

heterogeneous (subclonal) loss. 2) The Active Surveillance Cohort included 148 needle 

biopsies performed between 2014–2021 at Johns Hopkins on patients undergoing Active 

Surveillance with available WSI, >5% tumor involvement by tissue area, and known ERG 

status by genetically validated IHC assay; this cohort did not have available PTEN IHC data.

Whole slide images:

Cohorts were scanned using the Hamamatsu S360 digital slide scanner at 40x or 20x 

magnification (Supplementary Table S1).
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ERG and PTEN immunohistochemistry staining and scoring:

ERG immunohistochemistry has been described previously and is an excellent surrogate for 

the presence of underlying ERG gene fusions by fluorescence in situ hybridization (FISH) 
16 or gene expression profiling 17. Briefly, the protocol utilizes a rabbit monoclonal anti-

ERG antibody (Ventana, Roche) with the Optiview secondary detection kit on the Ventana 

Discovery Ultra. Cases are scored as ERG-positive if any tumor nuclei show staining, and 

staining is most often homogeneous and clonal within a dominant tumor nodule since this 

is a relatively early genetic event during tumor development 24. ERG staining and scoring 

were performed on tissue microarrays (TMAs) comprised of 3–4 0.6 mm diameter tumor 

spots for the radical prostatectomy cohorts (the TMA spots were taken from the same donor 

block subsequently used to generate the WSI H&E, see Figures 1 and 2). ERG staining and 

scoring was performed on standard histologic slides for the prostate needle biopsies.

PTEN status immunohistochemistry has been described previously and is highly correlated 

with the underlying presence of PTEN gene deletions 18–20. Briefly, it utilizes a rabbit 

monoclonal anti-PTEN antibody (D4.3, Cell Signaling Technology) with the Optiview 

secondary detection kit on the Ventana Discovery Ultra. Cases are scored as having 

PTEN loss if any tumor cells have complete loss of cytoplasmic and nuclear staining, 

and staining is often heterogeneous indicating underlying subclonal PTEN deletions which 

most frequently occur subsequent to ERG rearrangement 24. PTEN staining and scoring 

was performed on TMAs for the radical prostatectomy cohorts comprised of 3–4 0.6 mm 

diameter tumor spots (the TMA spots were taken from the same donor block subsequently 

used to generate the WSI H&E assessed by deep learning, see Figures 1 and 2). PTEN 

staining and scoring was performed on standard histologic slides for the prostate needle 

biopsies, and for a subset of 19 radical prostatectomy cases with known heterogeneous 

(subclonal) PTEN status based on TMA scoring (see below).

For 19 tumors at RP with known PTEN heterogeneity (subclonal loss), tumor areas with 

intact PTEN (red) and PTEN loss (blue) were manually annotated by a trained genitourinary 

pathologist (EE) on the IHC-stained slide (Figure 2). The pathologist was blinded to the 

deep learning algorithm prediction at the time of annotation. The sum of all annotated areas 

with PTEN loss was divided by the total annotated tumor area to derive the percent of the 

tumor area with PTEN loss by IHC. For each case, this value was compared to the predicted 

area of tumor with PTEN loss based on the deep learning algorithm using the H&E-stained 

slide (see below).

Deep learning algorithm:

We present a self-supervised learning-based technique that exploits the hierarchical structure 

of tumor morphology at several image resolutions. The system includes four stages: 1) 

Tumor identification; 2) Feature representation learning; 3) Classification; 4) Explainability 

maps generation (Figure 1).

Tumor Identification: In this study, SegFormer 25 was used as the segmentation network. 

It is a semantic segmentation network with a multi-layer perceptron (MLP) decoder and a 

transformer. 110 images of radical prostatectomy from the Natural History Cohort were used 

Erak et al. Page 4

Mod Pathol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to train the model (these did not include the 64 hold-out samples for ERG validation or the 

50 hold-out samples for PTEN validation). The network uses a hierarchical transformer 

encoder similar to Swin Transformer 26, but without positional encoding. Due to the 

hierarchical nature of the encoder, the network can produce multi-level, multi-scale features 

with high-resolution coarse features and low-resolution fine-grained features. The absence 

of positional encoding enables us to apply the model to patches with varied resolutions 

without considerably reducing performance, which is one of the most major limitations of 

transformer-based networks. Its decoder is meant to be lightweight and efficient, creating 

powerful representations while remaining simple and computationally intensive.

We employ the deep active learning framework proposed by Singhal et al. 27 to reduce the 

annotation effort of pathologists for this supervised learning technique. On training datasets, 

the system simulates active learning-based iterative data labelling. In the initial iteration, 

the model is trained using a small labelled dataset. The trained SegFormer model is then 

supplied unlabeled images, and a measure of uncertainty is computed for each unlabeled 

sample. Then, a pathologist annotates the samples with the highest uncertainty (measured 

uncertainty greater than the criterion) and adds them to the initial training set. In the 

subsequent iteration, a new set of annotated images is used to retrain the model. This phase 

is repeated until no samples have an uncertainty measurement that exceeds a predetermined 

threshold. The framework helped reduce the pathologist’s burden for annotating tumor 

regions on training cases by 60 to 70 percent. A representative comparison of pathologist 

annotation of tumor-containing areas and the deep learning algorithm can be seen in Figure 

2A. Algorithms were run at 20x magnification. At 20x magnification, the discovered tumor 

region is divided into non-overlapping patches of two different sizes, 256 × 256 and 4096 

× 4096. N patches of size 4096 × 4096 are extracted from the detected tumor location. The 

256 × 256 patches represent fine-grained features (cell interactions), whereas the 4096 × 

4096 patches reflect features at the region level (interactions between cell clusters).

Feature Representation Learning: We pre-train two vision transformers (ViTs) 28 on 

the tumor patches using the DINO 29 method for learning and extracting qualitative features 

in an unlabeled, unsupervised manner. For 256 × 256 size patches, a ViT with 12 encoder 

layers (ViT-S) is pre-trained. The N x 256 × 384 tensor extracted from ViT-S is input 

to another ViT model with 6 encoder layers (ViT-XS). Supplementary Table S2 lists the 

length of the feature vector, the number of heads, the depth, and the MLP size for both ViT 

models. In the classification architecture, the 6 layers from ViT-XS are applied as pre-trained 

weights. Figure 1B depicts the training process for ViT-S and ViT-XS, respectively.

The ViT-S model is pre-trained on a total of 0.75 million 256X256 patches (from 331 WSI) 

using DINO for 300 epochs with a batch size of 128 and an initial learning rate of 0.0005 

with a cosine scheduler for decay. During ViT-S pre-training, 8 local views of size 96 × 96 

and 2 global views of size 224 × 224 are configured for data augmentation in DINO. The 

ViT-XS model is pre-trained with DINO on a total of 28 thousand N x 256 × 384 tensors 

(extracted from ViT-S) for 100 epochs with a batch size of 128. During ViT-XS pre-training, 

8 local views of size 6 × 6 and 2 global views of size 14 ×14 are configured for data 

augmentation in DINO.
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Feature Extraction & Classification: For training a model to predict WSI-level 

molecular markers, we use a pre-trained ViT-XS with a 2-layer classification head (Figure 

1C). The architecture consists of a vision transformer with 8 encoder layers (ViT-CL), 

followed by Global Attention Pooling 30 and Multi-Layer Perceptron blocks with WSI-level 

class labels as the output. The weights of the VIT-XS model are used to initialize the first 

6 layers of the classification model, while the latter two layers are initialized randomly. The 

model is trained on WSIs (with WSI-level class labels of a specific molecular marker) in a 

supervised manner for 50 epochs with a batch size of 1 and an initial learning rate of 0.0001 

with a cosine scheduler for decay. We employed the Multiple-Instance-Learning (MIL) 31 

approach for WSI-level classification training to eliminate the issue of varying amounts of 

patches in a WSI as model input.

Explainability maps generation for PTEN loss prediction: The objective here is 

to generate a visual heatmap that highlights the image region that corresponds to the class 

predicted by a model. Using a sliding window technique with a 128 × 128 pixel step size, 

1024 × 1024 overlapping regions are extracted from the tumor region identified by the 

SegFormer model at 20x magnification. On each patch, the ViT-S trained model is employed 

to generate features. Using the model’s inference, an AI score is estimated for each patch’s 

features. A heatmap of a WSI level is generated by piecing together individual regions and 

superimposing the predicted score. Using a reduced patch size and regions that overlap, 

we generate a fine-grained explanation map. The heatmap area is quantified so that the 

proportion of tumor area corresponding to PTEN loss can be calculated.

Implementation Details: All models were trained and tested using the NVIDIA A6000 

GPU, and the code was written using PyTorch framework in Python (see Supplementary 

Table S3 for model size and inference time).

Statistical analysis:

Area under the receiver operator characteristic curve (AUC) was used to benchmark 

accuracy of the deep learning molecular status prediction algorithms compared to the ground 

truth molecular status based on immunohistochemistry. AUC was calculated in Python. To 

mitigate the overfitting and data distribution issues, we employ a k-fold cross validation 

strategy. The training data is broken down into k subsets. On k-1 folds, a model is trained, 

and the resulting model is validated using the remaining (held-out) data. This procedure is 

repeated for each fold. The AUC performance measure reported by k-fold cross-validation 

is then the average of the values. We use k=5 in all the experiments. For 19 WSI, predicted 

percent tumor area with PTEN loss based on the deep learning algorithm and actual percent 

tumor area with PTEN loss based on pathologist-annotated immunostained slides were 

compared using Spearman correlation (GraphPad).

Results

ERG algorithm performance in radical prostatectomy and needle biopsy samples:

ERG algorithm training utilized 224 H&E-stained WSI from the Natural History 

radical prostatectomy cohort, of which 46% (104/224) were ERG-positive by 
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immunohistochemistry (IHC). All ERG-positive cases showed homogeneous (clonal) 

positivity within the tumor tissue tested, as has previously been described for this early 

genomic alteration 24,32–34. Testing was conducted on 64 WSI originally held out from the 

training cohort, of which 41% (26/64) were ERG-positive, with an AUC on five-fold-cross 

validation of 0.91±0.034 (Table 1). Performance of these models was further assessed 

on 248 WSI from radical prostatectomies in the Case Cohort, of which 43% (107/248) 

were ERG-positive by IHC, with an AUC on five-fold-cross validation of 0.86±0.025. 

Since the frequency of ERG fusion in prostate cancer varies considerably by race 35,36, to 

ensure algorithm performance in a more racially diverse cohort, we examined performance 

in 375 WSI from radical prostatectomies in the Race Cohort. Among these cases, 34% 

(127/375) were ERG-positive, and the algorithm had an AUC on five-fold-cross validation 

of 0.89±0.007.

Needle biopsies have dramatically less tumor content on a WSI compared to a standard 

quadrant section of a radical prostatectomy, but diagnostic needle biopsies are the sample 

type that would be most useful to screen for underlying genomic alteration status in order 

to select patients who could benefit from confirmatory sequencing. Thus, we next tested the 

ERG algorithm performance in 179 WSI from the Radiation Therapy needle biopsy cohort, 

of which 39% (70/179) were ERG positive, achieving an AUC on five-fold-cross validation 

of 0.78±0.017. Similar performance was seen in a contemporary Active Surveillance needle 

biopsy cohort, where 40% (59/148) were ERG-positive by IHC, with an AUC on five-fold-

cross validation of 0.80±0.029 (Table 1).

PTEN algorithm performance in radical prostatectomy and needle biopsy samples:

Because PTEN deletion is subclonal or heterogeneous in as many as 40% of primary 

prostate tumors 18–20, we trained PTEN loss deep learning models exclusively on cases 

with homogeneous PTEN status (intact or loss) by IHC. Training utilized 205 H&E-stained 

WSI from the Natural History radical prostatectomy cohort, of which 27% (56/205) had 

homogeneous (clonal) PTEN loss by IHC. Testing was conducted on 50 WSI originally held 

out from the training cohort, of which 26% (13/50) had homogeneous PTEN loss by IHC, 

with an AUC on five-fold-cross validation of 0.81±0.043 (Table 2). Performance of these 

models was further assessed on 201 WSI from radical prostatectomies in the Case Cohort, of 

which 29% (58/201) had homogeneous PTEN loss by IHC, with an AUC on five-fold-cross 

validation of 0.72±0.014. Because PTEN deletion is less frequent among African-American 

compared to European descent patients 36,37, we next examined performance of the PTEN 

algorithm in 337 WSI from radical prostatectomies in the Race Cohort, of which 17% 

(56/337) had homogeneous PTEN loss on IHC, with an AUC on five-fold-cross validation of 

0.80±0.015. Finally, we tested PTEN algorithm performance in 151 WSI from the Radiation 

Therapy needle biopsy cohort, of which 19% (28/151) had homogeneous PTEN loss, with 

an AUC on five-fold-cross validation of 0.75±0.028 (Table 2).

Algorithm explainability via subclonal PTEN deletion mapping:

PTEN IHC can provide cellular-level resolution for areas of subclonal PTEN gene deletion 

within a dominant tumor nodule of a radical prostatectomy sample. Having developed the 

PTEN loss detection algorithm using tumors with homogeneous (clonal) PTEN status based 
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on IHC staining, we next tested whether the deep learning algorithms could accurately 

predict PTEN loss in 19 radical prostatectomy cases with known heterogeneous (subclonal) 

PTEN loss by IHC. For the ground-truth comparison, a pathologist utilized the PTEN IHC 

slide to annotate areas of PTEN loss. By visual comparison, the predicted and actual PTEN 

status maps were highly concordant (Figure 2) with some exceptions (Supplementary Figure 

S1). Finally, the percent tumor area with predicted PTEN loss based on deep learning 

significantly correlated with the percent tumor area with PTEN loss based on IHC (r=0.58, 

p=0.0097). This novel methodology that not only makes the algorithm explainable, but also 

facilitates the quantification of the percentage of loss in the case of PTEN.

Discussion

Prostate cancer is the most commonly diagnosed solid tumor among men in the US 

(excluding skin cancer), and as such, it has been a key test case for the development of 

deep learning algorithms that aid the pathologist in tumor diagnosis and grading. Though the 

majority of prostate cancer cases are not lethal, some molecular subsets of prostate cancer 

have prognostic implications, are predictive of therapy response, or may be important to 

identify for associated risk of underlying germline alterations. PTEN loss, for example, is 

highly prognostic in localized prostate cancer 18,38,39 and may also be predictive in the 

metastatic setting as increasingly potent AKT inhibitors are being tested in clinical trials 
13,14. Pathogenic mutations in DNA repair genes - such as those involved in mismatch 

repair or homologous recombination - are also enriched in lethal prostate cancer 40,41 and 

make patients eligible for PARP inhibition or immune checkpoint inhibition at the time of 

metastatic disease 42,43. These mutations may also be germline in up to half of the time 

that they occur 40,41, thus it is critical to identify tumors with these alterations as early as 

possible in the disease course.

Despite recommendations by NCCN that all high risk patients and some subsets of 

intermediate risk localized prostate cancer patients receive germline sequencing, with both 

germline and somatic sequencing offered to metastatic patients 44, the national shortage 

of genetic counselors and expense of sequencing has made this impractical in many care 

settings 45,46. The lack of uptake for sequencing in non-academic medical centers may 

pose an increasing threat to health equity, as precision medicine approaches may not be 

equally available to all patients 46. Thus, for a common tumor type like prostate cancer, 

the development of deep learning algorithms to help triage patients who may particularly 

benefit from sequencing, could fill an unmet clinical need and reduce the economic burden 

of sequencing all cases, as well as reducing the burden on the genetic counseling system.

Here, as proof-of-principle that machine learning algorithms can be applied to H&E images 

of prostate cancer to identify underlying genomic alterations, we leveraged two of the 

most common genomic changes in primary prostate cancer: ERG gene fusions and PTEN 
gene deletion. ERG (ETS related gene) is a member of the E-26 transformation-specific 

family of transcription factors that is involved by a genomic rearrangement resulting in 

its overexpression in about half of prostate cancers arising in men of European descent. 

ERG rearrangements are an early event during tumorigenesis and are most commonly clonal 

within a given tumor nodule 24,32–34. Though not prognostic in surgically treated patients 

Erak et al. Page 8

Mod Pathol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on its own, ERG expression may have prognostic significance in the context of PTEN loss, 

where it is associated with improved outcomes 38,47. In contrast to ERG, loss of PTEN 
function is frequently subclonal in a significant fraction of primary tumors 19,24,32,48, and 

has been strongly associated with adverse oncologic outcomes in prostate carcinoma 38,39,49, 

occurring in as many as 40% of cases. Recent trials of Ipatasertib, a potent AKT inhibitor, 

have suggested that PTEN loss may also be predictive of response to targeted therapy 13,14.

Though both ERG expression and PTEN loss can be assessed in prostate cancer by relatively 

inexpensive immunohistochemistry assays that are highly concordant with underlying 

genomic status, potentially obviating the need for a deep learning prediction algorithm, 

the frequency of these alterations makes them an excellent test case for the development 

of machine learning algorithms to identify molecular alterations. By visual inspection, prior 

studies have suggested that some morphologic features may be significantly associated 

with ERG gene rearrangement, including blue-tinged mucin, cribriform growth pattern, 

macronucleoli, intraductal tumor spread, and signet-ring cell features 4. However, these 

features are exceedingly common in primary prostate cancer and are not highly specific for 

ERG alterations. PTEN loss has also be associated with foamy cell change and intraductal 

carcinoma, though specificity of these features is similarly imperfect 50. Leveraging 

thousands of H&E images and an enormous feature space, it is not surprising that artificial 

intelligence-based algorithms might be able to identify features associated with ERG 

rearrangements more accurately than the human eye.

To our knowledge, only one prior published study applied deep-learning based algorithms 

to identify ERG fusions in prostate cancer 51. This study utilized training and validation 

datasets including 261 and 131 H&E radical prostatectomy images, respectively, with 

AUCs ranging from 0.82 to 0.85. In the current study, we build on this work to develop 

novel deep learning models trained on a similarly sized radical prostatectomy dataset with 

validation in 3 independent radical prostatectomy cohorts comprising 687 tumors, and 327 

needle biopsies. Though AUCs ranged from 0.86 to 0.91 in the radical prostatectomy 

cohorts, performance dropped in the needle biopsy cohorts to an AUC of 0.78 to 0.79, 

almost certainly due to the four- to six-fold smaller tumor area sampled in the latter. A 

notable limitation of this study is its single-institution design, and future work will expand 

our findings to outside cohorts. However, this result provides the first evidence, to our 

knowledge, that deep learning algorithms for molecular prediction can be used in diagnostic 

needle biopsies, the most clinically relevant sample type for wide-spread application of this 

type of screening. In future studies, training on large needle biopsy cohorts may help to 

develop algorithms with improved performance in these small tissue samples.

Our study is also the first, to our knowledge, to apply deep learning algorithms to identify 

prostate cancers with PTEN loss. Due to the high frequency of subclonal alterations 

in PTEN 19,24,32,48, predicting PTEN status based on H&E is particularly challenging. 

Here, we trained and initially tested algorithms in cases that were highly likely to 

have clonal PTEN alterations, based on homogeneous PTEN loss or intact PTEN using 

immunohistochemistry of tissue microarray tumor samples. Though PTEN algorithm 

performance in this dataset was reasonable, with AUCs ranging from 0.72 to 0.81, the 

performance was notably less optimal than we saw for ERG algorithms. This may be due 
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in part to the fact the tissue microarrays (where PTEN status was assessed for all cases) 

may have undersampled cases with focal subclonal PTEN alterations, leading to mislabeling 

of the PTEN status. In future studies, the ground truth labeling for PTEN status should 

be based on IHC assessment on the same standard radical prostatectomy quadrant sections 

as used for algorithm training and testing. Despite this limitation, the PTEN algorithm 

developed on clonal cases actually performed reasonably well when applied to WSI of cases 

with known subclonal PTEN loss in order to test algorithm explainability. By heat mapping 

PTEN status prediction using the deep learning algorithm across small tumor tiles in these 

cases, to our knowledge, we are the first to examine explainability of these molecular 

prediction models. In this analysis, we saw a remarkable association between areas of tumor 

with PTEN loss based on the immunohistochemistry-stained slide and the deep learning 

PTEN status prediction based on H&E images. More concretely, the percent tumor area 

with predicted PTEN loss based on immunohistochemistry correlated significantly with the 

percent tumor area with PTEN loss based on deep learning.

In summary, we present one of the first proof-of-principle studies to use deep learning 

models trained on H&E images of prostate cancer to predict underlying molecular subtype. 

Though we focused on the most common molecular alterations in this first study, future 

studies will test similar models for rarer molecular subclasses of prostate cancer which may 

have more immediate clinical relevance, such as those with DNA repair alterations. Such 

studies will require large multi-institutional cohorts or clinical trials to provide adequate 

sample numbers and careful correlation with sequencing for evidence of bi-allelic loss 

where IHC assays are not available. However, once developed, these algorithms may 

prove instrumental to the inexpensive and rapid triaging of early stage prostate cancers 

at high risk of harboring a pathogenic alteration in DNA repair genes. With the increasing 

use of machine learning algorithms in daily pathology practice for tumor grading and 

staging, similar molecular triage algorithms could provide a quick screen for clinically 

actionable alterations using the ubiquitously available diagnostic H&E, reducing the burden 

on our genetic testing and counseling services for this common tumor type, and improving 

universal access to precision medicine.
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Figure 1: Overview of deep learning framework utilized for molecular classification.
(A) The deep learning methodology includes multiple stages, tumor identification, feature 

representation learning, feature extraction and classification as well as a final step of 

explainability map generation. An example of the automated tumor identification algorithm 

is shown, with tissue microarray (TMA) punch sites visible. (B) The feature representation 

learning comprises a novel hierarchical architecture based on two distinct vision transformer 

(ViT)-based networks. The first is intended to extract fine-grained characteristics by 

exploiting the spatial interaction of cells. The second network is trained to reflect region-
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level feature extraction, such as cell cluster or gland interactions. (C) Feature extraction and 

classification uses an additional distinct ViT.
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Figure 2: Correlation between pathologist annotations and deep learning algorithm predictions 
for radical prostatectomy tumor regions with PTEN loss.
(A) Representative PTEN immunostaining slide with pathologist annotations for regions of 

tumor with PTEN loss (blue) and intact PTEN (red). Punch sites for the TMA construction 

are visible. (B) Corresponding heat maps for deep learning algorithm prediction of tumor 

regions with PTEN loss based on H&E stained slide. (C) Correlation between percent of 

tumor area with PTEN loss based on pathologist annotation and percent of tumor with 

PTEN loss based on deep learning (DL) model across 19 whole slide images of radical 

prostatectomy samples.
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Table 1:

Performance of deep learning model for ERG status prediction in validation cohorts

Cohort # of cases (# of ERG-positive cases) AUC

Natural History Cohort (RP) 64 (26) 0.91 ± 0.034

Case-Cohort (RP) 248 (107) 0.86 ± 0.025

Race Cohort (RP) 375 (127) 0.89 ± 0.007

Radiation Therapy Cohort (NB) 179 (70) 0.78 ± 0.017

Active Surveillance Cohort (NB) 148 (59) 0.80±0.029

RP: Radical prostatectomy; NB: Needle biopsy
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Table 2:

Performance of deep learning model for PTEN status prediction in validation cohorts

Cohort # of cases (# of cases with homogeneous PTEN loss) AUC

Natural History Cohort (RP) 50 (13) 0.81±0.043

Case-Cohort (RP) 201 (58) 0.72±0.014

Race Cohort (RP) 337 (56) 0.80±0.015

Radiation Therapy Cohort (NB) 151 (28) 0.75±0.028

RP: Radical prostatectomy; NB: Needle biopsy
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